УДК 621.74:669.018.44

Ю. В. Самойлов, д-р техн. наук Э. И. Цивирко, канд. техн. наук В. Е. Самойлов

Национальный технический университет, г. Запорожье

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ, СТРУКТУРА И СВОЙСТВА ЛИТЫХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ

В работе исследовано влияние поверхностного натяжения никелевых сплавов методом «лежащей капли». В качестве легирующих элементов использованы Ta, Zr, Cr, Ti, Co, Al, Nb, W и W-Re комплексы. Установлено, что химический состав никелевых сплавов существенно изменяет поверхностное натяжение расплава и, в итоге, макро- и микроструктуру, микротвердость литого метала.

Поверхностное натяжение, никелевый сплав, структура, легирующие элементы

Введение

В металлургии и литейном производстве поверхностные явления играют значительную роль. Физико-механические и служебные характеристики литых деталей в значительной степени зависят от размеров и расположения макро- и микрозерен металлической матрицы сплавов.

Изучение закономерностей образования новых фаз имеет большое значение для правильного понимания многих литейных процессов, к ним, в первую очередь, относят возникновение зародышей при кристаллизации. Для начала выделения новой фазы необходимы центры кристаллизации, образование которых связано с затратой энергии на создание поверхности раздела. Одновременно с этим образование поверхности раздела вызывает рост энтропии, что способствует дроблению системы [1].

Критический размер зародыша, что отвечает максимальному выделению энергии, определяется по формуле

$$r_k = \frac{2MT\sigma}{L\rho_{\Delta}T},\tag{1}$$

где М – молярная масса, кг/моль;

T – температура кристаллизации, K;

L – скрытая теплота кристаллизации, Дж/м³;

 ρ – плотность расплава, кг/м³;

 ΔT – переохлаждение, К;

 σ — поверхностное натяжение на границе фаз, мДж/м².

Выходя из энергетического отношения образования зародышей, все центры кристаллизации, величина которых лежит в интервале $r < r_k$, растворяются в расплаве, а при $r > r_k$ становятся активными центрами и могут расти.

Работа образования зародыша критических размеров:

$$A = \frac{B\sigma^3}{\left(\Delta T\right)^2},\tag{2}$$

© Ю. В. Самойлов, Э. И. Цивирко, В. Е. Самойлов, 2010

где B — величина, которая зависит от свойств жидкости, которая кристаллизуется, то есть от изменения ее общей свободной энергии [2].

Согласно приведенным зависимостям (1, 2) кристаллизации, на параметры структуры сплавов существенно влияет поверхностное натяжение расплава, управляя которым, можно заметно улучшить качественные характеристики отливок, что является в настоящее время вполне актуальным.

Из отношения (2) видно, что, чем больше поверхностное натяжение тем большую работу нужно совершить для образования зародыша критического радиуса.

В настоящем исследовании изучали влияние поверхностного натяжения расплава на микротвердость, макро- и микроструктуру никелевых сплавов, легированных различными элементами.

Методика исследований

Навеска электролитического никеля или сплава массой 3,5±0,5 г размещалась на электрокорундовой подложке в специальной установке (рис. 1) для определения поверхностного натяжения жидкого метала методом «лежащей капли». Навеска расплавлялась в атмосфере очищенного аргона (рис. 2) при различных температурах (табл. 1), а геометрические параметры капли фиксировались фотокамерой. Полученные параметры капли позволяли получить следующие данные: поверхностное натяжение на границе металл — газ ($\sigma_{\mathcal{MC}, 2}$), краевой угол смачивания (θ) и адгезию на границе металл-подложка (A_a).

Установлено, что температура нагрева жидкой капли никеля заметно влияет на краевой угол смачивания и стабильное состояние капли на подложке. В дальнейших экспериментах поддерживалась температура (1510±5) °С, что максимально снижало взаимодействие жидкого никеля с подложкой ($A_a = 305 \text{ мДж/м}^2$).

Рис. 1. Схема установки для определения поверхностного натяжения жидкого металла методом «лежащей капли»:

- 1 баллон с аргоном;
- 2 редуктор; 3 трехходовой кран;
- 4 дрэксель;
- 5 печь с восстановленной медью;
- 6 моностат;
- 7 печь с палладиевым катализатором;
- 8-9 колонки з силикагелем и цеолитом;
- 10 двухходовой кран;
- 11 реометр;

- 12 колба; 13 — проекционная лампа; 14 — линза;
- 15 стойка крепления печи;
- 16 капля; 17 печь из кварцевого стекла;
- 18 индуктор;
- 19 подложка;
- 20 стойка крепления камеры;
- 21 фотокамера

Tuoming I Bininine realitepartyph na nebepinteerinbie napartiepherintin initiesin (neditoritari in)e	-21
---	-----

t, °C	θ, град	σ _{ж.г.,} мДж/м ²	$A_{a,}$ мДж/м 2
1450	146	2337	400
1480	144	1467	280
1510	137	1134	305
1540	121	1053	511

*d*₁ – максимальный диаметр капли;

h – расстояние от максимального диаметра до вершины капли; θ - краевой угол смачивания

- Рис. 3. Схема размещения образца и легирующей присадки на подложке:
- 1 никелевый образец; 2 легирующая присадка; 3 - подложка из Al₂O₃

В полученные капли электролитического никеля вводились такие легирующие элементы: тантал, цирконий, хром, титан, кобальт, вольфрам и ниобий. Введение легирующих элементов в никель осуществлялось по следующей технологии (рис. 3): расчетное количество легирующего элемента размещалось на подложке, сверху ложилась готовая капля никеля, комплекс двух металлов расплавлялся и выдерживался при температуре 1510±5 °C. Геометрические параметры капли фиксировали фотокамерой для последующего определения поверхностных характеристик. Массовая доля легирующих элементов составила 2,17...4,87 %. Из полученных затвердевших капель изготовляли металлографические шлифы, на которых измеряли микротвердость на микротвердометре «Micromet» фирмы «Buehler» при нагрузке 0,1Н, а также изучали макро- и микроструктуру. Макроструктуру металла выявляли с помощью травителя, состоящего из 80 % HCl и 20 %H₂O. Микроструктуру – в реактиве Марбле.

Сплав ЭИ 435 ГОСТ 5632—85 (Ni — основа;Cr — 20 %; Ti — 0,35 %) легировали следующими элементами: титаном, вольфрамом, танталом, кобальтом, ниобием, алюминием и цирконием по 34 % каждого, а также вольфрам-рениевым сплавом из расчета введения W = 3,2...3,8 % и Re = 0,2...0,8 %. Исследования проводили по той же методике, что и с никелем.

Травление на макроструктуру осуществляли в реактиве «Фри»: 27 г FeCl₃; 36 мл HCl; 30 мл H_2O .

Средние размеры макро- и микрозерен как никеля, так и сплава определяли методом секущих.

Обсуждение результатов

Измерениями показателей поверхностного натяжения установили, что заметно уменьшил краевой угол смачивания никеля ниобий (на 18 град). Остальные легирующие элементы практически не изменяли краевой угол смачивания (131±5 град). В то же время легирующие элементы существенно изменили поверхностное натяжение жидкого никеля. Тантал увеличил поверхностное натяжение, по **сравнению сникетевымрастивом, на 107 мДж/м**², а цирконий, титан и вольфрам снизили на 286 мДж/м², 280 мДж/м², 267 мДж/м² и 101 мДж/м², соответственно. Влияние кобальта и хрома на поверхностное натяжение никеля было минимальным (менее 7 %) (табл. 2).

Установлено, что легирование увеличивает взаимодействие жидкого металла с материалом подложки (Al_2O_3) по сравнению с чистым никелем. Адгезия (A_a) при всех вариантах легирования возросла, причем максимально — при введении ниобия — на 132 мДж/м² (табл. 2). Легирование никеля исследуемыми элементами изменяло средние размеры макрозерна. Существенное измельчение макрозерна произошло при легировании никеля цирконием, титаном, а укрупнение — при легировании танталом и хромом. Математическая обработка полученных экспериментальных данных показала, что с увеличением поверхностного натяжения ($\sigma_{m.e.}$) под влиянием легирования размеры макрозерен растут

 $d_{cp.makpo} = 2 \cdot 10^{-17} \sigma_{\mathcal{HC.}}^{5,493}$, MM $r = 0.88 \pm 0.05.(3)$

Микроструктура чистого никеля (рис. 4, а) представляла собой у- твердый раствор с наличием эвтектики, располагающейся преимущественно по границам зерен. Аналогичную структуру имеет никель, легированный кобальтом (рис. 4, г). При легировании никеля танталом, хромом, вольфрамом и ниобием микроструктура представляла собой ү- твердый раствор с наличием карбидов. После легирования никеля цирконием (рис. 4, ∂) в микроструктуре γ - твердого раствора присутствовала эвтектика типа γ+(Ni₂Zr). Присадка титана приводила к появлению совместно с у- твердым раствором карбидов и интерметаллидной фазы типа Ni₂Ti (рис. 4, б). Легирование никеля исследуемыми присадками существенно изменило размеры микрозерен. Заметно измельчили микрозерно цирконий, титан, ниобий. Увеличение размеров микрозерен произошло после введения в никель тантала и хрома. Установили, что с увеличением поверхностного натяжения растет средний размер микрозерна в никеле:

$$d_{cp.mukpo} = 4 \cdot 10^{-5} \sigma_{\mathcal{M}.r.}^2$$
, MKM $r = 0.88 \pm 0.06.(4)$

Изучение связи средних размеров макро- и микрозерен (5) показало что с ростом размеров микрозерен увеличились и размеры макрозерен:

$$d_{qp,makpo} = 30,64 \cdot d_{qp,makpo} + 21,884$$
, мкм $r = 0,94\pm0,04$. (5)

Легирующие элементы в ряде случаев заметно изменяли микротвердость никеля. Существенно повысили микротвердость цирконий и ниобий. Установили, что с увеличением поверхностного натяжения микротвердость заметно уменьшается (R = 0,77).

Изучение влияния структуры легированного никеля на микротвердость показало, что с измельчением макро- и микрозерен твердость металлической матрицы возрастает (табл. 2).

В сплаве ЭИ 435 заметно уменьшил краевой угол смачивания титан (на 70 град), остальные легирующие элементы его практически не изменили (145±5 град). Все легирующие элементы уменьшили поверхностное натяжение сплава ЭИ 435, но наиболее существенно – алюминий (на 2271 мДж/м²) (табл. 2).

Присадка	Массовая доля %	σ <u>_{ж.г.}</u> , мДж/м ²	θ°	arLa, мДж/м ²	<i>d_{мик}</i> , мкм	<i>d_{мак}</i> , мм	Микротвердость HV, МПа			
никель										
-	-	1134	137	305	43	0,9	1612			
Ta	2,34	1241	135	363	80	1,8	1697			
Zr	2,17	854	126	352	30	0,1	2119			
Cr	2,23	1160	136	326	64	1,1	1560			
Ti	2,31	867	127	345	33	0,2	1865			
Co	2,33	1058	135	310	42	0,8	1633			
W	4,87	1033	130	369	36	0,7	1795			
Nb	4,33	848	119	437	34	0,5	2343			
ЭИ 435										
-	-	2687	145	486	70	2	2395			
Ti	4	1361	75	1713	28	1,75	4413			
W	4	2051	143	413	46	1,5	2842			
Та	4	2420	145	438	40	2	2636			
Со	4	1198	144	229	38	1,85	2667			
Nb	4	2393	148	364	37	1,75	3712			
Al	4	416	150	56	25	0,6	3394			
Zr	3	1433	146	245	30	0,76	2561			
W	20	1460	119	752	30	0,3	2667			
W+Re	3,8+0,2	2638	147	426	46	0,85	2942			
W+Re	3,2+0,8	1514	132	501	47	0,5	3123			

Таблица 2 — Результаты исследований никеля и сплава ЭИ 435

При этом установлено, что при всех вариантах легирования изменяется взаимодействие сплава с материалом алундовой подложки. Алюминий максимально снижает ($A_a = 56 \text{ мДж/м}^2$) это взаимодействие, а титан максимально усиливает ($A_a = 1713 \text{ мДж/м}^2$).

Легирование сплава ЭИ 435 исследуемыми элементами изменяло размеры макрозерна. Существенное измельчение макрозерна произошло при легировании сплава алюминием, цирконием и вольфрам-рениевым комплексом. Практически не изменял макрозерно тантал. Полученная зависимость (6) показала, что при увеличении поверхностного натяжения сплава под влиянием легирования размеры макрозерен растут

$$d_{cp.makpo} = 0,0004\sigma_{\mathcal{HC}.r.} + 0,4929, \text{ MM } r = 0,47\pm0,15.(6)$$

Микроструктура исходного сплава ЭИ 435 (рис. 5, *a*) представляет собой гетерогенную систему, состоящую из γ- твердого раствора на основе никеля с наличием карбидов типа MeC.

Структура сплава, в который вводили 4 %Ti (рис. 5, *б*), состоит из γ- матрицы, карбидов, упрочняющей интерметаллидной γ'- фазы типа (Ni₃Ti) с наличием значительного количества крупных частиц оксинитридов и нитридов титана.

В структуре образцов с присадкой 4 %W (рис. 5, e) наблюдается выделение интерметаллида типа WNi₄, а при наличии в сплаве рения, наряду с интерметаллидами, образуется эвтектика типа (γ -WNi₄), располагающаяся в междендритных пространствах. Введение вольфрама, в особенности в присутствии рения, способствует уменьшению размеров дендритной ячейки и структурных составляющих.

a – без легирования; δ – Ті; e – Та; e – Со; ∂ – Zr; e – W; \mathcal{K} – Сг; 3 – Nb

Для структуры образцов с присадками 4 % Та (рис. 5, e) и 4 % Nb (рис. 5, e) характерно выделение из твердого раствора упрочняющей интерметаллидной фазы Ni₃Ta и Ni₃Nb, соответственно. Кроме того, в структуре образцов также присутствуют достаточно крупные включения окислов и карбидов.

Микроструктура сплава с присадкой 4 %Со (рис. 5, *д*), представляет собой твердый раствор кобальта в Ni—Cr γ - матрице с наличием незначительного количества мелких окислов и карбидов.

Введение в сплав циркония (34 %) (рис. 5, *з*), способствует образованию эвтектики типа (*γ* –

 Zr_2Ni), располагающейся по границам зерен, а также интерметаллида Zr_2Ni .

Структура сплава, в который вводили 4 %Al (рис. 5, \mathcal{M}), состоит из γ - матрицы, карбидов и упрочняющей интерметаллидной γ' - фазы типа Ni₃Al.

Легирование сплава ЭИ 435 исследуемыми присадками уменьшило размеры микрозерна, с увеличением поверхностного натяжения растет его средний размер

$$d_{cp.микро} = 4 \cdot 10^{-6} \, \sigma_{\mathcal{HC.}}^2 - 0,0003 \, \sigma_{\mathcal{HC.}} + 26,439, \,$$
 мкм
 $r = 0,72 \pm 0,08.$ (7)

Рис. 5. Микроструктура легированного сплава ЭИ 435 (× 500): a – исх.; δ – Ti 4 %; ε – Ta 4 %; ∂ – Co 4 %; e – Nb 4% ;ж – Al 4 %; з – Zr 3 %; u – W 20 %; κ – W 3,8 % + Re 0,2 %; л – W 3,2 % + Re 0,8 %

Определение связи средних размеров макрои микрозерен (8) показало, что однозначной связи этих параметров для данного сплава не наблюдается

 $d_{cp.makpo} = 0.0199 \ d_{cp.mukpo} + 0.4708 \ ,\text{mm} \ r = 0.38.(8)$

Изучение влияния микроструктуры легированного сплава на микротвердость показало, что с измельчением микрозерна микротвердость возрастает (табл. 2).

Выводы

1. Легирование никеля и сплава ЭИ 435 элементами, используемыми для получения разнообразных жаропрочных никелевых сплавов, изменяет характеристики поверхностного натяжения сплава.

2. С повышением поверхностного натяжения при легировании никеля и сплава ЭИ 435 в литом металле увеличиваются размеры макро- и микрозерен. 3. Заслуживает внимания влияние легирующих элементов, а, соответственно, и поверхностного натяжения на микротвердость, что может заметно изменять физико-механические и служебные характеристики изделий из никелевых сплавов.

4. Результаты исследований показали, что между поверхностным натяжением, структурой и механическими свойствами, существуют зависимости.

Перечень ссылок

- Васильев В. А. Физико-химические основы литейного производства : [уч. для вузов]. – М. : «Интермет Инжиниринг», 2001. – 336 с.
- Теоретичні основи ливарних процесів : навч. посібник / Л. П. Горюшкіна. – К. : НМК ВО. – 1993. – 288 с.

Поступила в редакцію 06.07.2009

Yu. V. Samoylov, E. I. Tsivirko, V. Ye. Samoylov SURFACE TENSION, STRUCTURE AND PROPERTIES OF CAST HEAT-RESISTANT NICKEL ALLOYS

У роботі досліджено вплив поверхневого натягу нікелевих сплавів методом «лежачої краплі». У якості легуючих елементів використані Та, Zr, Cr, Ti, Co, Al, Nb, W и W-Re комплекси. Встановлено що хімічний склад нікелевих сплавів істотно змінює поверхневий натяг розплаву і, у результаті, макро- і мікроструктуру, мікротвердість литого металу.

Поверхневий натяг, нікелевий сплав, структура, легуючі елементи

There is investigated influence of surface tension of nickels alloys by «flat drops» method. Ta, Zr, Cr, Ti, Co, Al, Nb, W and W-Re complexes are used as alloying elements. It is determined that chemical composition of nickel alloys substantially changes surface tension of the melt and, as a result, macrostructure and microstructure, microhardness of cast metal.

Surface tension, nickel alloy, structure, alloying elements