УДК 669.721.5

Канд. техн. наук В. А. Шаломеев, д-р техн. наук Э. И. Цивирко Национальный технический университет, г. Запорожье

ВЛИЯНИЕ ЭЛЕМЕНТОВ IV ПОДГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ Д. И. МЕНДЕЛЕЕВА НА СТРУКТУРУ И СВОЙСТВА СПЛАВА МЛ-5

Исследовано влияние элементов IV подгруппы (Si, Ge, Sn и Pb) на структурообразование, механические свойства и жаропрочность магниевого сплава Мл-5 и установлено, что механические свойства и жаропрочность сплава Мл-5 зависят от электронного строения и расположения в периодической таблице Д. И. Менделеева указанных элементов.

Магниевый сплав, структурообразование, жаропрочность, электронное строение

Магниевые сплавы, как наиболее легкие конструкционные металлы, находят все большее применение в машиностроении, обеспечивая повышение характеристик агрегатов за счет снижения веса конструкций [1]. При этом, важным показателем является сравнительно низкая стоимость магниевых сплавов без применения дорогих и дефицитных легирующих добавок [2].

Поэтому разработка высококачественных магниевых сплавов без применения дорогостоящих легирующих компонентов является актуальной задачей.

Одним из способов улучшения физико-механических свойств литых сплавов при сохранении достаточной вязкости является образование сложнолегированных твердых растворов [3].

Растворимость элементов в магнии определяется близостью их атомных диаметров ($A_{r Mg}$ и $A_{r \exists n}$), которые, согласно Юм-Розери [4], должны отличаться не более, чем на 15 %. В противном случае происходит понижение энергии связи атомов растворителя и легирующих элементов, а вследствие искажения кристаллической решетки растворимость легирующего элемента уменьшается.

Другим важным условием растворимости элемента в металле-основе, по данным Даркена-Гурри [5], является небольшая разность электроотрицательности (\Im/O_{Mg} и $\Im/O_{\Im n}$), которая не должна превышать 0,2–0,4. Фактически переход атомов легирующих элементов в металлический раствор определяется не путем захвата электронов и образовывания ионных соединений, а наоборот, способностью отдавать электроны в коллективизированное состояние и превращаться в металлический ион.

В настоящее время собран большой экспериментальный материал о характере взаимодействия магния с другими элементами периодической системы Д. И. Менделеева [6]. Химические свойства магния определяют два валентных электрона *s*² во внешней оболочке его атома, которые он может легко отдавать, приобретая устойчивую кон-

© В. А. Шаломеев, Э. И. Цивирко, 2010

фигурацию $s^2 p^6$. С элементами IV подгруппы – Si, Ge, Sn и Pb магний образует соединения, отвечающие правилам валентности, и получающихся путем передачи обеих s-электронов магния атомам легирующих элементов с образованием стойких s^2p^6 состояний. В результате устойчивое $s^2 p^6$ — состояние образуется и атомами магния и атомами неметалла или полуметалла, что должно вызвать их определенное обособление с появлением энергетической щели и полупроводниковых свойств. Поэтому соединения подгруппы характеризуются высокими значениями теплоты образования, пониженной электропроводностью и хрупкостью. При этом, температуры плавления и устойчивость соединений увеличиваются по мере усиления металлоидного характера [7]. Проведенный анализ диаграмм состояния двойных систем элементов IV подгруппы с магнием показал, что при повышении температуры плавления соединений происходит развитие гетерогенной области их существования за счет области твердых растворов. Температуры плавления растут от Mg₂Pb к Mg₂Si вследствие повышения электроотрицательности в ряду Pb, Sn, Ge, Si (рис. 1) [8].

Элементы IV группы — Si, Ge, Sn и Pb являются широко распространенными и доступными. Кроме того, они обеспечивают благоприятный фактор по отношению к магнию (таблица 1), поэтому могут быть перспективными в качестве легирующих элементов при создании магниевых сплавов с повышенными механическими свойствами.

В настоящей работе изучали влияние Si, Ge, Sn и Pb на структуру и свойства отливок из магниевого сплава Мл-5.

Магниевый сплав Мл-5 выплавляли в индукционной тигельной печи типа ИПМ-500 по серийной технологии. Расплав рафинировали флюсом ВИ-2 (4048 % MgCl₂, 3040 % KCl, 5 % BaCl₂, 35 % CaF₂) в раздаточной печи и из нее порционно отбирали ковшом расплав. В последний вводили присадки лигатур Mg-Si (47 % Si),

Рис. 1. Диаграммы состояния Mg-Pb, Mg-Sn, Mg-Ge, Mg-Si [9]

Таблица 1 – Атомные радиусы, электроотрицательность элементов и их соотношение с магнием [10]

Элемент	А _{г Эл.} , пм	(A _{Mg} -A _{r Эл})/ А _{Mg} , %	Э/Оэл.	Э/О _{Мд} -Э/О _{Эл.}
Mg	160	-	0,56	—
Si	136	15,0	0,83	-0,27
Ge	139	13,1	0,84	-0,28
Sn	158	1,3	0,75	-0,19
Pb	175	-9,4	0,78	-0,22

Мg-Ge (24 % Ge), свинца C3 (99,9 %) ГОСТ 3778-77, олова O2 (99, 56 %) ГОСТ 860-75 для получения по расчету 0; 0,05; 0,1; 1,0 % масс. элементов и заливали песчано-глинистые формы для получения стандартных образцов с рабочим диаметром 12 мм для механических испытаний. Образцы проходили термическую обработку в печах типа Бельвью и ПАП-4М по режиму: гомогенизация при $415^{\pm 5}$ °C, выдержка 15 ч, охлаждение на воздухе и старение при $200^{\pm 5}$ °C, выдержка 8 ч, охлаждение на воздухе.

Предел прочности и относительное удлинение образцов определяли на разрывной машине P5 при комнатной температуре.

Длительную прочность при температуре 150 °C и напряжении 80 МПа определяли на разрывной машине АИМА 5-2 на образцах с рабочим диаметром 5 мм по ГОСТ 10145-81.

Микроструктуру отливок изучали методом световой микроскопии («Neophot 32») на термически обработанных образцах после травления реактивом, состоящем из 1 % азотной кислоты, 20 % уксусной кислоты, 19 % дистиллированной воды, 60 % этиленгликоля.

Микротвердость структурных составляющих сплава определяли на микротвердомере фирмы «Buehler» при нагрузке 0,1 Н.

Химический состав сплава различных вариантов удовлетворял требованиям ГОСТ 2856-79 и по содержанию основных элементов находился примерно на одном уровне (8,5 % Al, 0,34% Mn, 0,30 % Zn, 0,01% Fe, 0,006 % Cu). Макрофрактографическое исследование изломов литого металла различных вариантов показало, что с повышением концентрации свинца, олова, германия и кремния в сплаве, его структура измельчалась (рис. 2).

Термическая обработка способствовала улучшению структурной однородности сплава, при этом границы зерен выравнивались и становились более четкими.

Микроструктура сплава Мл-5, отлитого по серийной технологии, представляла собой δ -твердый раствор с наличием эвтектики типа $\delta + \gamma (Mg_{17}Al_{12})$ и интерметаллида $\gamma (Mg_{17}Al_{12})$ (рис. 3, *a*).

Влияние элементов 4 подгруппы на микроструктуру сплава Мл-5 идентично: наличие их в сплаве от 0,05 % до 1,0 % каждого способствовало некоторому уменьшению расстояния между осями дендритов второго порядка и размеров структурных составляющих, а также дроблению эвтектики (рис. 3, б-м). При этом, измельчение зерна было большим у свинца, а меньшим у кремния. С повышением концентрации исследуемых элементов в сплаве, размеры эвтектики $\delta + \gamma (Mg_AAl_3)$ заметно уменьшались, а количество интерметаллидных выделений увеличивалось, что и приводило к измельчению зерна (табл. 2). В то же время микроструктура сплава Мл-5, содержащего германий и кремний, имела некоторые отличия - кроме основных структурных составляющих, в исследуемых сплавах наблюдались крестообразные и пластинчатые выделения, характерные для химических соединений типа Mg_2Ge и Mg_2Si (рис. 4).

Конструкционные материалы

Рис. 2. Изломы образцов литого сплава Мл-5 (*a*) и с элементами Pb (*б*-*г*); Sn (*д*-*ж*); Ge(*з*-*к*); Si (*л*-*н*): 0,05 % (*б*, *д*, *з*, *л*); 0,1 % (*в*, *е*, *u*, *м*); 1,0 % (*г*, *ж*, *к*, *н*) × 3,5

- 148 -

Рис. 3. Микроструктура образцов термообработанного сплава Мл-5 (*a*) и элементами Pb (δ -*г*); Sn (∂ -*ж*); Ge(3- κ); Si (n-h): 0,05 % (δ , δ , 3, n); 0,1% (θ , e, u, m); 1,0 % (e, κ , κ , h) × 100

- 149 -

270	Кол-во, % масс. (по расчету)	Величина	Расстояние между	Микротвердость матрицы, HV, МПа		
мент		микрозерна,	осями дендритов	до т/о	после т/о	после испытан. на
		МКМ	2-го пор., мкм			жаропрочн. (т ₈₀ ¹⁵⁰)
_	1	140	18	840,9	1114,1	1179,5
Pb	0,05	135	17	839,9	1116,5	1290,0
	0,1	110	15	939,1	1141,0	1347,8
	1,0	80	13	978,2	1141,0	1365,6
Sn	0,05	125	14	866,9	1122,4	1236,5
	0,1	100	13	956,5	1129,5	1307,5
	1,0	90	10	986,5	1145,9	1493,7
Ge	0,05	125	18	980,0	1202,4	1365,1
	0,1	100	17	990,0	1211,5	1370,5
	1,0	100	16	1050,3	1245,9	1438,5
Si	0,05	130	18	995,9	1290,5	1390,1
	0,1	130	18	1196,1	1351,0	1397,5
	1,0	110	16	1231,0	1401,0	1465,5

Таблица 2 — Средний размер структурных составляющих и микротвердость образцов из сплава Мл-5

Исследованиями механических свойств образцов установлено, что стандартная термообработка и длительные испытания способствовали повышению микротвердости матрицы и структурной однородности сплавов (табл. 3). Микротвердость сплава росла от свинца к кремнию, причем эта тенденция сохранялась как для термообработанного металла, так и для металла после жаропрочных испытаний. При этом прослеживается определенная зависимость величины микрозерна и микротвердости металла от атомного радиуса и электроотрицательности исследуемых эле-

Рис. 4. Дополнительная интерметаллидная фаза в сплаве Мл-5 с Ge и Si × 500

ментов: с увеличением атомного радиуса и уменьшением электроотрицательности элемента — растет микротвердость матрицы сплава (рис. 5, δ), а микрозерно измельчается (рис. 5, δ).

Получены уравнения 1-го порядка, описывающие влияние атомного радиуса (A_r) и электроотрицательности (Э/О) легирующих элементов на размер микрозерна (d) и микротвердость матрицы (HV) сплава Мл-5:

 $[HV] = 2244.8 - 6.65*[A_r], M\Pi a r = -0.83; (1)$

 $[HV] = -509,9 + 2179,8*[\Theta/O], \text{ MKM } r = 0,76;$ (2)

 $[d] = 216,6 - 0,80^*[A_r], M\Pi a r = -0,95;$ (3)

$$[d] = 94,88 + 14,4*[\Theta/O], \text{ MKM } r = 0,15$$
. (4)

Анализ механических свойств сплава Мл-5 с присадками Pb, Sn, Ge и Si показал, что все эти элементы упрочняли металл. Установлено, что свинец и германий повышали пластичность магниевого сплава, а олово и кремний — практически не влияли на них (табл. 3). Жаропрочность сплава Мл-5, содержащего свинец и олово, была ниже исходного сплава, по-видимому, за счет образования легкоплавких фаз, располагающихся по границам зерен (рис. 6). Увеличение содержания германия и кремния в сплаве улучшало жаропрочность. При этом кремний, по сравнению с германием, оказывал большее влияние на жаропрочность (табл. 3).

Таким образом, упрочнение отливок из сплава Мл-5 наблюдалось при легировании рассмотренными элементами IV подгруппы периодической системы Менделеева. Однако для отливок, имеющих заданный техническими условиями уровень пластичности, легирование оловом и кремнием необходимо исключить. Германий и кремний в магниевом сплаве улучшали его жаропрочность.

Эле-	Кол-во,	Механичес	Время до разруше-	
мент	% мас.	σ,, МПа	δ, %	ния, т _{р.} ч.(Т _{исп.} =150°С
	(по расчету)			σ _в =80 MΠa)
		216,5	2,0	28010
	0,05	225,4	2,0	27835
РЪ	0,1	248,3	2,3	272 ²⁵
	1,0	258,6	3,3	15915
	0,05	220,8	2,0	27145
Sn	0,1	222,2	1,8	250 ⁵⁰
	1,0	224,8	1,6	24305
	0,05	219,9	2,0	28430
Ge	0,1	242,3	2,5	303 ²⁰
	1,0	252,1	4,2	38355
Si	0,05	226,5	2,3	28940
	0,1	232,6	2,2	356 ²⁰
	1,0	241,7	2,2	41255

Рис. 5. Зависимость величины микрозерна (○) и микротвердости матрицы (●) сплава Мл-5 от атомного радиуса (*a*) и электроотрицательности (*б*) элементов подгруппы кремния при содержании их в сплаве 1,0 %

Рис. 6. Локальные оплавления по границам зерен в сплаве Мл-5 с присадкой 1,0 % Pb (a) и 1,0 % Sn (b) × 500

Выводы

1. Легирование магниевого сплава Мл-5 элементами IV подгруппы периодической системы Менделеева способствует измельчению макро- и микрозерна и повышению микротвердости матрицы. При этом, интенсивность измельчения зерна увеличивается от кремния к свинцу, микротвердость — наоборот.

2. С увеличением атомного радиуса и уменьшением электроотрицательности элементов IV подгруппы измельчается микрозерно и растет микротвердость матрицы сплава.

3. Свинец, олово, германий и кремний повышают предел прочности магниевого сплава. В то же время свинец и германий улучшают и пластичность сплава, а олово и кремний снижают ее.

4. Германий и кремний повышают жаропрочность сплава Мл-5, а свинец и олово понижают ее за счет образования легкоплавких фаз по границам зерен.

5. Для отливок, работающих в условиях повышенных температур, рекомендуется легирование сплава германием и кремнием.

Перечень ссылок

- Edgar R. L. Magnesium Alloys and their Applications / Edgar R. L. Wiley-Weinheim-New York-Chichester-Brisbane-Singapore-Toronto. Verlag GmBh. – 2000. – P. 3–8.
- Бондарев Б. И. Фундаментальные проблемы Российской металлургии на пороге 21 века / Бондарев Б. И., Рохлин Л. Л. – М. : Российская Академия Естественных Наук, 1998. – Т. 2. – С.118–156.
- Корнилов И. И. Физико-химические основы жаропрочности сплавов / Корнилов И. И. – М. : АН СССР, 1961. – 254 с.
- Юм-Розери В. Структура металлов и сплавов / Юм-Розери В., Рейнор Г. В. М. : Металлургиздат, 1959. – 454 с.
- Даркен Л. С. Физическая химия металлов / Даркен Л. С., Гурри Р. В. – М.: Металлургиздат, 1960. – 458 с.
- Самсонов Г. В. Роль образования стабильных электронных конфигураций в формировании свойств химических элементов в соединениях / Самсонов Г. В. – К. : Изд-во ИПМ АН УССР, 1965. – 256 с.

Поступила в редакцию 17.07.2009

V. A. Shalomeyev, E. I. Tsivirko

INFLUENCE OF ELEMENTS OF THE 4TH SUBGROUP OF PERIODIC TABLE OF D. I. MENDELEEV ON THE STRUCTURE AND PROPERTIES OF ML-5 ALLOY

Досліджено вплив елементів IV підгрупи (Si, Ge, Sn i Pb) на структуроутворення, механічні властивості й жароміцність магнієвого сплаву Мл-5 і встановлено, що механічні властивості й жароміцність сплаву Мл-5 залежать від електронної будови й розташування в періодичній таблиці Д. . Менделєєва зазначених елементів.

Магнієвий сплав, структуроутворення, жароміцність, електронна будова

There was investigated influence of elements of the 4^{th} subgroup (Si, Ge, Sn and Pb) on structure formation, mechanical properties and heat resistance of ML-5 magnesium alloy. It was established that mechanical properties and heat resistance of ML-5 alloy depend on electronic structure and location of the specified elements in Mendeleev's periodic table.

Magnesium alloy, structure formation, heat resistance, electronic structure

- 152 -